Novel Hardware Design Variation through
Feature-Oriented Programming

Justin Deters

Washington University in St. Louis
j.detersawustl.edu

Supported under NSF CISE award CNS-1763503 Performant Architecturally Diverse Sys-
tems via Aspect-oriented Programming

Traditional HDLs

- Hardware designers have | module OneBitAdder(
to contend with low level * :gm :27‘;
structures in Hardware R Eh o 0 et
D riotion Lan 5 output io_sum,
(He;E)pto Bl=tee s 6 output io_carryOut
S). 7);
. 8 wire p = io_a " io_b;
- Hardware designstendto . e g - ioa & iob:
be monolithic with little ~ © wire p_c = io_carryin & p;
el 11 assign io_sum = p fo_carryln;
exipility. 12 assign io_carryOout = g | p_c;
3 endmodule

- Tedious and error prone to explore design spaces and optimize.

- We demonstrate this with a hardware adder.

Traditional Adder Designs

Speed

Space

Extending Design Space

Speed

Space

Our Approach

- Why not isolate the carry implementation as a ?
- Excellent candidate for
- Aspects capture and it

should exist.

Adders with Ripple Carry

1-Bit Adder 1-Bit Adder 1-Bit Adder 1-Bit Adder

Adders with Carry-Lookahead

Carry-Lookahead Module

1-Bit Adder 1-Bit Adder 1-Bit Adder 1-Bit Adder

Contribution |

- We use AOP to
implement primary
functionality of the carry
design.

Implemented in Chisel
using their AOP library.

Nothing is hardcoded,
thus refactoring is easy.

1

3

InjectingAspect(
{top: Adder => top.adders},
{adder: OneBitAdder with CLIO
val g = adder.a & adder.b
adder.pOut := adder.p
adder.gOut := g

Do
InjectingAspect(

{top: Adder => Seq(top)},

{adder: Adder -
val cLModule = Module(new cLGenerator(bitwidth))
for (i 0 until bitwidth){

cLModule.pin(i) :=
cLdModule. gin (i)
}

adder.adders(i).pOut
= adder.adders(i).gout

or(i <- 1 until bitwidth){
adder.adders(i).carryln

}

1= cLModule.cOut(i-1)

adder.sums. last := cLdModule.cOut. last

Contribution Il

5(16,2) Adder ripple
Sum 0..15 ==— Pubing Fe—A0.15
Bit 8-15 Bit 0-7

lookahead lookahead
Carry Out —=— «—80.15

- Built hybrid designs out of our building blocks.

- Two sets of one-bit adders with carry-lookahead applied.
- Each subset can be treated like building blocks.

- Apply ripple-carry between both of the subadders.

- Our approach gets us to the intermediate design space!

Hybrid Design Area

Hybrid
\ =8= Hybrid Unoptimize
1500
\ Classic Carry-Lpokahead

0

= 1000
-
|

500

Classic Ripple-Carry | [T

0 5 10 15 20 25 30
Number of Sub-Adders m

Hybrid Design Delay

50 Hybrid
== Hybrid Unoptimize /

40
- Classic Ripple-Carry //
v
C 30 , /
Nt
>
©
3 -0 /”_- -
o

—— |
10 Classic Carry-Lookahead
0
0 5 10 15 20 25 30

Number of Sub-Adders m

Continuing Work

J. Deters, R. Cytron, "Performance Counter Design Variation in Rocket
Chip via Feature-Oriented Programming”, Fifth Workshop on
Computer Architecture Research with RISC-V (CARRV), 2021.

- Chose what events are provides _
Rocket Chip Counter
and when events are counted. System

Core I$

- Directly manipulate ASTs of Scala
to apply features.

CSR

D$

- Provide a aspect-oriented DSL to
capture features.

