
Novel Hardware Design Variation through
Feature-Oriented Programming

Justin Deters

Washington University in St. Louis
j.deters@wustl.edu

Supported under NSF CISE award CNS-1763503 Performant Architecturally Diverse Sys-
tems via Aspect-oriented Programming

Traditional HDLs

• Hardware designers have
to contend with low level
structures in Hardware
Description Languages
(HDLs).

• Hardware designs tend to
be monolithic with little
flexibility.

1 module OneBitAdder (
2 input io_a ,
3 input io_b ,
4 input io_car ry In ,
5 output io_sum ,
6 output io_carryOut
7) ;
8 wire p = io_a ^ io_b ;
9 wire g = io_a & io_b ;
10 wire p_c = io_ca r r y I n & p ;
11 ass ign io_sum = p ^ io_ca r r y I n ;
12 ass ign io_carryOut = g | p_c ;
13 endmodule

• Tedious and error prone to explore design spaces and optimize.
• We demonstrate this with a hardware adder.

1

Traditional Adder Designs

2

Extending Design Space

3

Our Approach

• Why not isolate the carry implementation as a feature?
• Excellent candidate for aspect oriented programming.
• Aspects capture implementation information and where it
should exist.

4

Contribution I

• We use AOP to
implement primary
functionality of the carry
design.

• Implemented in Chisel
using their AOP library.

• Nothing is hardcoded,
thus refactoring is easy.

1 In j e c t i ngAspec t (
2 { top : Adder => top . adders } ,
3 { adder : OneBitAdder with CLIO =>
4 va l g = adder . a & adder . b
5 adder . pOut : = adder . p
6 adder . gOut : = g
7 }
8) ,
9 In j e c t i ngAspec t (
10 { top : Adder => Seq (top) } ,
11 { adder : Adder =>
12 va l cLModule = Module (new cLGenerator (b i tWidth))
13
14 fo r (i <− 0 un t i l b i tWidth) {
15 cLModule . pIn (i) : = adder . adders (i) . pOut
16 cLdModule . g In (i) : = adder . adders (i) . gOut
17 }
18
19 fo r (i <− 1 un t i l b i tWidth) {
20 adder . adders (i) . c a r r y In : = cLModule . cOut (i − 1)
21 }
22
23 adder . sums . l a s t : = cLdModule . cOut . l a s t
24 }
25)

5

Contribution II

• Built hybrid designs out of our building blocks.
• Two sets of one-bit adders with carry-lookahead applied.
• Each subset can be treated like building blocks.
• Apply ripple-carry between both of the subadders.
• Our approach gets us to the intermediate design space!

6

Hybrid Design Area

7

Hybrid Design Delay

8

Continuing Work

J. Deters, R. Cytron, ”Performance Counter Design Variation in Rocket
Chip via Feature-Oriented Programming”, Fifth Workshop on
Computer Architecture Research with RISC-V (CARRV), 2021.

• Chose what events are provides
and when events are counted.

• Directly manipulate ASTs of Scala
to apply features.

• Provide a aspect-oriented DSL to
capture features.

9

