Feature-Oriented Cache
Designs

CARRV 2023

Justin Deters

Supported by NSF CISE award CNS-1763503 and SimpleRose

L2 Cache
- Integer Instructions
Floating Point Instructions

L1 Cache

® The sea of hardware features is
vast.
e Hennessy and Patterson

introduced RISC-V".
o Royalty-Free

o Open Source
e Many characterizations

o RocketChip, RISC-V Mini, BOOM,
SERYV, picorv32, SweRV, scri

Branch prediction

Virtualization Instructions

Data prefetch

Instruction prefetch

Integer Instructions

Temperature Sensor

Scratchpad
memory

1. J. Hennessy and D. Patterson. John Hennessy and David Patterson Deliver Turing Lecture at ISCA 2018. https://www.acm.org/hennessy-patterson-turing-lecture, 2018. 2
D

https://www.acm.org/hennessy-patterson-turing-lecture

How does this fit into slim RISC-V?
Need new hardware

Integer Instructions

e Adaptable both qualitatively and quantitatively

e Feature-orient the characterization to accept new features .
Integer Instructions

Integer Instructions ‘

Caches are ubiquitous in computing.

Qualitatively

Write-Back vs Write-Through
Write-Allocate vs No-Write Allocate
Replacement Policy

Inclusion Policy

e Quantity

o Cache Line Size
o Number of Cache Lines
o Number of cache levels

o O O O

a. Build on work from CARRV 2021
b. Add rich type information

Aspect Oriented Programming'

aspect Logging { '

OutputStream logStream = System.err; Pointcut

pointcut move() :

call(FigureElement.setXY(
Point.setX())
Point.setY()) .
Line.setP1(Point)) Advice
Line.setP2(Point));

move() {
logStream.println(

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. Proceedings of ECOOP ’97, 1997.
2. Eclipse Foundation. Aspectj, 2022. https://www.eclipse.org/aspectj/
3. Eclipse Foundation. The aspectj programming guide, 2003. https://www.eclipse.org/aspectj/doc/released/progguide/index.html

https://www.eclipse.org/aspectj/

0 Dispense Peanut

10 Contains Nuts!

How do we feature orient this?

switch (stateReg) {
is (green) {

when(io. badEvent) {
stateReg := orange Clear Bad Event
Y
}
is (orange) {
when(io. badEvent) {
stateReg := red
} . elsewhen (io.clear) {
stateReg := green
} Bad Event
} Clear
is (red) {
when (io.clear) {
stateReg := green
9

1. M. Schoeberl. Digital Design with Chisel. Kindle Direct Publishing, 2019

Peanut

Peanut

‘ Action ‘

0 Dispense Peanut

10

Base a

Ta) ()

Before q1

JOROS0

c

"

Foam

Pointcut

tokenPointcut = Pointcutter|[Token, Coin](nfa.alphabet, token token
t: Coin

})

AfterToken[Coin] (tokenPointcut, nfa)((thisJoinPoint: TokenJoinpoint[Coin], thisNFA: NFA)

value = thisJoinPoint.out.asInstanceOf|[ValueState].value
thisJoinPoint.out {
s: PrinterState (s.action == + value.toString) (None, thisNFA)
(Some((PrinterState(+ value, value,), Lambda)), thisNFA)

Advice

12

1. Eclipse Foundation. Aspectj, 2022. https://www.eclipse.ora/aspectj/

https://www.eclipse.org/aspectj/

+ Print Funds

Peanut

Peanut

0 Dispense Peanut

Peanut

0 Dispense Peanut

Peanut Peanut

A

0 Dispense Peanut

10 Contains Nuts!

13

10 Contains Nuts!

0 Dispense Peanut

14

Read

Write

Acknowledge Idle
Acknowledge Read
Dirty Bit Accounting

HasBufferBookkeeping
HasMiddleAllocate
HasWriteFSM
HasSimpleWrite
HaslnvalidOnWrite
HasMiddleUpdate
HasDirtyBitAccounting
Dusty

15

Endpoints

e Endpoints implemented for RISC-V Mini'
e All endpoints are fully synthesizable

Endpoint Features
Read-Channel HasWriteStub, HasBufferBookeeping
Read-Only HasWriteStub, HasMiddleAllocate

Write-Channel HasWriteFSM, HasSimpleWrite, HasBufferBookeeping, HasInvalidOnWrite

WriteBypass HasWriteFSM, HasSimpleWrite, HasMiddleAllocate, HaslnvalidOnWrite

WriteThrough HasWriteFSM, HasSimpleWrite, HasMiddleAllocate, HasMiddleUpdate

WriteBack HasWriteFSM, HasSimpleWrite, HasMiddleAllocate, HasMiddleUpdate, Dirty Accounting
Dusty? HasWriteFSM, HasSimpleWrite, HasMiddleAllocate, HasMiddleUpdate, Dirty Accounting, Dusty

1. D. Kim. riscv-mini. https://github.com/ucb-bar/riscv-mini, 2022.

2. S. Friedman, P. Krishnamurthy, R. Chamberlain, R. K. Cytron, and J. E. Fritts. Dusty caches for reference counting garbage collection. In Proc. of Workshop on Memory Performance:

Dealing with Applications, Systems and Architecture, Sept. 2005.

16

e Treatthe cache as a type.
e Generate components by calling methods only when needed.
e Use AOP to extend types and insert method calls.

-\—>. W

e Scala Traits allow extending a class
at instantiation.

e Package features into traits.

e Apply them to either the instruction
or data cache to add new hardware.

e [or features that crosscut types =»
Use AOP!

Coding Effort

Feature

Base System
HasWriteStub
HasWriteNFA
HasSimpleWrite
HasBufferBookeeping
HasMiddleAllocate
HaslnvalidOnWrite
HasMiddleUpdate
Dirty Accounting
Dusty

Chisel
336
10
10
17
35
68
12
21
11
0

Our Library
25

0

55

o O O O o

27

Faust

—
c©© 0 00 OO O O

66
14

Total
361
10
65
17
51
76
20
29
104
14

19

Area Measurements

Lower Better

Endpoints LUTs (normalized)
readOnly-dusty
readOnly-writeBack
readChannel-dusty
readOnly-writeThrough
readChannel-writeBack
readOnly-writeBypass
readChannel-writeThrough
readOnly-writeChannel
readChannel-writeBypass
readChannel-writeChannel

All data normalized to readChannel-writeChannel LUTs.

1.81
1.76
1.57
1.56
1.52
1.49
1.35
1.25
1.25
1.00

20

benchmark
median
multiply
gsort

towers
vvadd
Average CPI

No Instruction Cache

Instruction Cache

Channel Write Bypass Write Through Write Back Dusty |Channel

Write Bypass Write Through ~ Write Back Dusty

21

e Evolve control structures
o Use AOP to build FSM features
o Only apply them when needed
e Combine techniques

o Separate out cache features
o Combine techniques to evolve the cache and the controller
o Selectively apply features via rich type information

e Marketplace of features
o Generalize to whole chip via type system
o Easily trade features between designers

22

