Performance Counter Design Variation in
Rocket Chip via Feature-Oriented Programming

Justin Deters & Ron Cytron

Washington University in St. Louis
j.detersawustl.edu

Supported under NSF CISE award CNS-1763503 Performant Architecturally Diverse Sys-
tems via Aspect-oriented Programming

Features in RISC-V

RISC-V implementations need

to be
successful.

to be

- Not all features are needed

all the time.

- Sometimes we seek to

augment features.

- We demonstrate this using
Rocket Chip’s performance

counters.

Misaligned
Operations Ordering

Dynamically Tl

Translated | (Quad-Precision|| Precision

Languages]| Floating-Point || Floating-Point

.Bit . Multiplication Decimal
RV32! Manipulation|| - ang Division Floating-Point
Atomic
Rve4l Instructions
RISC-V
Single-Precision

Rv128l Floating-Point

Instruction-
Fetch Fence

Transactional "
=) ()

ompressed
Instructions

User-Level | (Supe! -level
Interrupts Instru

Packed-SIMD
Instructions

Feature Choices

Num Instruction All Direct Address JTAG
Counters Events Events Counters Restricted Counters

Standard Rocket Chip

Num Instruction All Direct Address JTAG
Counters Events Events Counters Restricted Counters

29

Embedded Core

Num Instruction All Direct Address JTAG
Counters Events Events Counters Restricted Counters

Small Core

Num Instruction All Direct Address JTAG
Counters Events Events Counters Restricted Counters

16

Debug Core

Num Instruction All Direct Address JTAG
Counters Events Events Counters Restricted Counters

29

How do we mix these features together?
What happens when we do this?

Current Monolithic Design

- The naive approach includes
all features in
If-Then-Else blocks. Core I$

Rocket Chip

- Including all features quickly
becomes unmanageable. CSR

- Monolithic design obscures D$
where the system starts and
ends.

- Hard coding and entangling features complicates maintenance
and extension.

Instead deconstructing a monolithic version,
why not construct a version with only the
features we need?

Feature-Oriented Programming

- We follow a feature-oriented ,
. Rocket Chip
approach to introduce Counter

features and their variations e |'$.
into a core implementation. —
- Obtain a foot print with only D$
the features we need.

- Structure the code to
accommodate future
variations easily.

- Instead of including everything, break the performance counter
system into user selectable feature units.
- Use aspect-oriented programming to apply selected features.

- Aspects capture what and where code should be added.
- Conditionally apply aspects to “weave” desired features.

Contribution: Feature Application using Scala Trees (Faust)

- We modify the Scala abstract | trait CSRHardware {
syntax trees with feature S et buildMappings0): Unit
information.)

6 class CSRFile() with CSRHardware {

- Faust can modify any part of the
generator.

buildMappings ()

10 buildDecode ()

- We hook directly into the type

12 def buildMappings() = {
system of Scala/Chisel. B
. 15
- Faust packages features into 16 def buildDecode() = {
"
aspects. B

21 abstract class PerfCounters()
) >xtends CSRHardware {

2% def buildMappings() = {
}
)8 def buildDecode() = {

30 }

Feature DSL

- Faust borrows syntax from aspect languages.
- Users just need to extend the Feature class.

Example
1 class CounterSystemFeature (numCounters: Int) extends Feature {
before (q"buildMappings()") insert (q"val numRealCounters =
$numCounters") in (q"class CSRFile") register

+ after(q"buildMappings()") insert q"performanceCounters.
buildMappings()" in (q"class CSRFile") register

before (q"buildDecode()") insert (q"performanceCounters.
buildDecode()") in (q"class CSRFile") register

- Easily package features and add them to Faust.

Dependency Management

Concrete Feature
Base System

Abstract Feature

Mutually Exclusive
Features

o |l

Counter System

\T/

At least one of these
must be satified

Address Restricted

Direct Counters Counters

Microarchitecture
Events

Instruction Events Cache Events Accumulator Event

1

en are events counted?

Direct Counters

Concrete Feature

Base System

- The standard way R
Rocket Chip collects |— o
. . . Mutually Exclusive

event information. o

Features Counter System

it

- All events are counted Aleas e f ese
at all times if |

: Address Restricted
configured. Dt Courters % ------------- >‘ e
[Instruction Events] [Microarchitecture] [Gache Events] [Accumulatur Even(]

Address Restricted Counters
- Events are only counted when the PC is within a specific address
range.

- Feature users can customize the address range.

Which events are counted?

Instruction,

—
=

—

Microarchitectureal, &
Cache Events

D

- These are the events
provided by
Rocket Chip.

- These groupings are
arbitrary and could
easily be more

Concrete Feature
Base System

Counter System

Abstract Feature

D

Mutually Exclusive
Features

Atleast one of these
must be satified |

Direct Counters }4 »| Address Restricted
Counters

atomized.

Microarchitecture
Events

] [Cache Events] [AccumulatcrEvent]

Accumulator Event

- Simple event from the Accumulator RoCC accelerator.

- Any accelerator could be adapted to provide event information.

Endpoint Design Variations

All Events + Address Restricted Counters (1.12)
All Events + Direct Counters (1.11)

Rocket Chip + 29 Counters Instruction Events + Address Restricted Counters (1.10)
Instruction Events + Direct Counters (1.09)

Rocket Chip + 0 Counters Our System + No Features (1.00)

Area in LUTs normalized to
Rocket Chip + 0 Counters

- The base implementation has 24056 LUTs.
- Only pay for features that we actually want.
Easily compare different design endpoints.
14

Our feature oriented design can save space!
Monolithic implementations leave space
savings on the table and are tedious to start
with.

Conclusions and Future Work

Our System Future Work
- Compossible - Bring feature-oriented design
- Extendable to other parts of Rocket Chip.
- Simple - Work directly with

Rocket Chip authors to

- Chea
: improve the type system.

Feature-oriented design provides a viable path for RISC-V
implementations to be tailored, extendable, and easy to understand.

