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ABSTRACT
Performance counters provide critical information to developers
about how well their applications work on a given platform. Cur-
rently, the Rocket Chip generator includes a performance counter
system that allows variation only of the number of counting regis-
ters. For RISC-V to be attractive across a wide range of applications,
other variations should be possible. For example, a developer may
be interested only in microarchitecture events. Perhaps the events
of interest may yield more information if counted only within a
specific function.

We reformulate the performance counter subsystem into sepa-
rate and orthogonal feature units that can be applied to Rocket Chip
either individually or in combination. We developed a tool that
applies features by manipulating Scala abstract syntax trees and
automatically determines feature dependencies. We also designed
a simple domain specific language to construct such features.

By feature-orienting the implementation of the performance
counters, we offer Rocket Chip developers a much larger range
of possible implementations. Developers can select any subset of
RISC-V events for monitoring. New events can be easily introduced
into attached processors for monitoring. If desired, events can be
counted only within certain ranges of the program counter.

We reconstruct the current performance counters using our
features as well as other interesting design endpoints. We present
results showing the resources needed for those configurations.

1 INTRODUCTION
The use of a common architecture has many advantages, and RISC-
V has been proposed as such an architecture [16]. RISC-V’s suc-
cess in that regard will depend on its ability to adapt to diverse
applications, ranging from low power, embedded devices to super-
computers. Across that spectrum, some features will be necessary
and some features can be eliminated, both at the architecture and
micro-architecture levels. A monolithic implementation of RISC-V
may contain the union of all possible features, but achieving a de-
sired subset becomes a tedious and error-prone process. Moreover,
some features may have variations that are optimized for certain
applications, such as networking or graphics processors.

We have been experimenting with a feature-oriented approach
to construct RISC-V-based architectures using aspect-oriented in-
spired programming to weave in the features of interest. Our work
begins with the Rocket Chip [2] characterization of RISC-V, and
we leverage the rich type system and tree-editing capabilities of
Chisel [3] and Scala [12] to weave features.

Using this approach, only those features of interest are included,
with absolutely no trace of excluded features for a given application.
Moreover, our approach opens up a marketplace of feature imple-
mentations that can easily be incorporated into a RISC-V platform
by meeting the feature specification.

In this paper we focus on one feature and its variations, namely
performance counters, which are defined in the RISC-V architecture
specification. However, some applications may have no need of
performance counters, and their omission can result in smaller
footprint and less power. Some applications may need only a subset
of the counters, while others may need more counters that are
provisioned in the architecture.

We reformulate performance counters into the following orthog-
onal features.

Which events are counted? Applications can specify which events
in RISC-V are of interest, including architected instructions, mi-
croarchitecture events, and cache events. Moreover, our approach
allows the introduction of events and their counters into coproces-
sors and other logic deployed alongside RISC-V.

When are events counted? As designed, RISC-V counters always
count events when they occur. However, developers are often inter-
ested in events only within certain methods or regions of program
execution [4]. Our approach allows the introduction of address-
range specifications that restrict when events are counted.

We describe the process by which we rendered performance
counters to be feature-oriented and present the results of useful
endpoints in the counters’ feature-design space.

2 PRIORWORK
In prior work [5–7, 10] have shown feature-oriented design to be
useful for feature management and resource reduction for software
in the context of the CORBA [11] Event Channel, which is responsi-
ble for publishing events to subscribers. The nature and disposition
of the publishers and subscribers dictate the features needed in the
Event Channel. In its monolithic form, unnecessary features avoid
execution, but their presence still consumes memory. Moreover,
even a simple runtime check concerning a feature’s inclusion can
adversely affect latency for time-critical applications.

Instead of removing features they did not want, they took a
compositional approach. By stripping down the system and then
adding features only when needed. They were able to get significant
savings in memory area and increases in performance.
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A feature-specific Event Channel was evaluated and compared
with a monolithic implementation in terms of its area and through-
put [10]. For area, the feature-specific version was 1.4–3 times
smaller than the monolithic version: an appreciable savings for
an embedded systems application. The throughput for the feature-
specific version was approximately 131,000 events per second as
compared to approximately 1,600 events per second in the mono-
lithic version, with unnecessary features present but disabled.

They accomplished this through aspect-oriented programming [9].
Aspect-oriented programming is useful when implementation con-
cerns do not fit cleanly into a single module within a program. An
aspect is a unit that contains advice about how implementation
information should be applied to a codebase. A piece of advice
is applied to a pointcut which is a set of join points which are
individual points in the codebase. Typically, the act of applying
the implementation information is called “weaving” as the aspect
applies across the different modules. In the event channel, they use
aspects to capture features and then conditionally apply them to
produce different feature sets.

Chisel Aspects. Chisel does contain an aspect library [8]. How-
ever, in our preliminary work, we found this library to be too
restrictive to accomplish the types of transformations we wished.
As such, we have built our own tool discussed in Section 4.

3 CURRENT MONOLITHIC DESIGN
The current performance counter system design follows the struc-
ture encouraged by traditional hardware definition languages rather
than the modularity of an object oriented language like Chisel. Re-
gardless of whether the user actually requires performance coun-
ters, the entire infrastructure for creating the system remains in
the generator. This includes all the routing infrastructure needed
to get the signals to the counters themselves. In total there are 9
separate classes where the performance counter system is imple-
mented, with 3 of those just routing signals. Furthermore, most of
the infrastructure is hard coded into the constructors of the classes,
obscuring where the performance counter implementation actually
is.

A monolithic approach like this not only makes it harder to
understand and customize the performance counter system, but
also the whole Rocket Chip system itself. Hard coding and entan-
gling features unintentionally complicates the maintenance and
extension of existing features. These unintended side effects are
exemplified in the performance counter system1.

Both removing functionality and extending functionality of the
performance counters completely changes the configuration values
for the resulting system. This is true for both individual events and
event sets provided. The bitmask value that configures a counter
to capture an event is determined by the order in which it appears
in the generator. Thus, adding or subtracting events changes the
bit patterns for all the other events that follow it in the code. This
can become very complicated if users only want a subset of the
provided events with the bit patterns changing in unexpected ways.

1Referenced code can be found at github.com/chipsalliance/rocket-
chip/blob/master/src/main/scala/rocket/RocketCore.scala

4 FEATURE APPLICATION USING SCALA
TREES

Instead of monolithically including all possible hardware features
in a generator, our approach is to separate out the generation infras-
tructure into feature units (i.e. aspects) which then can be applied
into the generator code base.

In order to automate the process of applying features, we have
created a tool in Scala called Faust (feature application using Scala
trees) 2. Faust is still in the early phases of development, but already
provides functionality for capturing features in a custom DSL and
automatic collection of feature dependencies.

4.1 Scala Trees
Faust uses Scalameta [14] to apply features by manipulating Scala
abstract syntax trees (ASTs). A feature unit may crosscut many dif-
ferent parts of the code base with implementation information that
changes many different code modules. For example, a feature that
implements a event to be monitored may add IO and connections
to many different modules when routing the signal.

To apply features, Faust takes in a directory of Scala code, the
feature units themselves, and dependency information. Each file is
parsed into its corresponding AST. The AST is then traversed to
find a point where feature implementation information needs to
be applied and then the tree is transformed producing a modified
AST. This process is repeated until all implementation information
is existed. Finally, a copy of the original file is saved and a new one
with the resulting AST is produced.

Opposed to the aspect library in Chisel [8] which operates upon
the produced FIRRTL, we are directly manipulating the Scala tree
giving us the ability to influence any part of the generator along
with retaining the full Chisel build system.

4.2 Feature DSL
In order to ease the creation of features, we provide a small DSL
embedded in Scala. Although Faust is not a proper aspect-oriented
compiler [9] we do borrow the general syntax found in aspect-
oriented programming languages such as AspectJ [15]. Listing 1
shows a feature and its syntax.

Keywords. before (join point) and after (join point)
indicate where the advice information will transform the AST. Cur-
rently that is either directly before or directly after the join point.
extend (class) allows a class to be extended with new type in-
formation. insert (code) tells Faust what new implementation
information needs to be inserted into the AST. Sometimes a user
might wish to refine the join point by using a specific type context
in (context) provides this functionality. Finally register adds
the advice to the system.

To add a new feature to the system, users need only to extend
the Feature class and fill the body with implementation advice. In
order to make sure that all features can be properly implemented,
users must also provide dependency information for new features.

2Code at github.com/jdeters/faust
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1 class CounterSystemFeature () extends Feature {
2 val numPerfCounters = 4
3
4 // modifying Rocket Core
5 val RocketCoreContext = q"class RocketImpl"
6 after (q"hookUpCore ()") insert (q"csr.io.counters

foreach { c => c.inc := RegNext(perfEvents.evaluate(
c.eventSel)) }") in RocketCoreContext register

7
8 // modifying CSR
9 val CSRContext = q"class CSRFile"
10
11 val stat = q"${mod"override"} val counters = Vec(${

numPerfCounters}, new PerfCounterIO)"
12 extend (init"CSRFileIO") insert (q"{ $stat }") in

CSRContext register
13
14 before (q"buildMappings ()") insert (q"val

numRealCounters = ${numPerfCounters}") in CSRContext
register

15
16 after(q"buildMappings ()") insert q"performanceCounters.

buildMappings ()" in CSRContext register
17
18 before (q"buildDecode ()") insert (q"performanceCounters

.buildDecode ()") in CSRContext register
19 }

Figure 1: A feature unit for implementing the base of the
counter system.

4.3 Dependency Management
Faust automatically determines and applies the parent features that
any child feature depends upon. A JSON file contains a graph of all
the features and their dependency relations. In a separate JSON file,
the end user lists out the features they would like Faust to apply to
the code base.

For each feature in the requested features file, Faust determines
what other features need to be implemented doing a depth first
traversal of the feature graph. Features are added until either the
root node has been reached or a feature where all the parents have
already been explored. Thus, we also avoid having to re-traverse
portions of the graph already included by other features.

4.4 Current Limitations
Due to the prototype nature of Faust, it currently has a few limita-
tions. First, all of the join points, implementation code, and contexts
must be captured as quasiquotes. These are strings that represent
ASTs, making implementation of Faust easier. Second, new features
must be manually added to Faust’s management system. In the
future, we would like to have this be an automatic process. Finally,
Faust can only recognize pure dependencies. More advanced types
of dependencies, discussed in Section 5, must be manually handled
by the user.

4.5 Modifications to Rocket Chip
Faust can hook onto individual statements, thus could apply fea-
tures inside of unmodified Rocket Chip. However, this approach is
very fragile as any change to a statement would break the feature
application. In order to facilitate robust feature application, we
have made several changes to Rocket Chip that make the generator
designs more modular.

1 trait CSRHardware {
2 def buildDecode (): Unit
3 def buildMappings (): Unit
4 }
5
6 class CSRFile(perfEventSets: EventSets = new EventSets (),
7 customCSRs: Seq[CustomCSR] = Nil) with CSRHardware {
8
9 buildMappings ()
10
11 buildDecode ()
12
13 def buildMappings () = {
14 // mapping code
15 }
16
17 def buildDecode () = {
18 // decode code
19 }
20 }
21
22 abstract class PerformanceCounters(perfEventSets:

EventSets = new EventSets (),
23 csrFile: CSRFile , nPerfCounters: Int) extends

CSRHardware {
24
25 def buildMappings () = {
26 // mapping code
27 }
28
29 def buildDecode () = {
30 // decode code
31 }
32 }

Figure 2: A more modular CSR structure.

The current design of Rocket Chip treats Module classes as direct
analogs for Verilog modules. Instead, we propose thinking of classes
as hardware types that perform various generation tasks. A class that
implements a hardware type should only extend the Module class
when appropriate. Listing 2 shows this technique in the context of
the CSR structure and howwe have utilized it in the implementation
of our Performance Counter system3.

As of writing, the CSRFile class in Rocket Chip contains 907
lines of code. By introducing this structure, generator users do not
need to sift through all the code to find exactly where new features
can be inserted giving us a robust set of join points in which to
easily integrate features into the system.

5 FEATURE-ORIENTED DESIGN
Using Faust, we have completely refactored the Rocket Chip perfor-
mance counter system to be feature-oriented. In addition, we have
also enhanced the functionality of the current system and provided
features that extend or modify the system that chip designers might
use.

Our Base System is the modified version of Rocket Chip discussed
in Section 4. The base system does not contain any generation
infrastructure for the performance counters.

5.1 Feature Decomposition
We are careful to manage the dependencies between the features in
our system. Other than the Base System itself, none of the other fea-
tures can produce a functional system on their own. Figure 3 maps
3We have also completed similar refactoring on several other classes, but we will not
cover them here.
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Figure 3: The dependency relationships between the fea-
tures.

out all the current features in our system and their dependencies.
The majority of the current dependencies are pure dependencies.
However, two of our features are mutually exclusive and cannot
exist in the system at the same time. Right now, mutually exclu-
sive features must be handled manually, but we plan to make this
automatic in the future.

We borrow our feature schema from prior work on feature-
oriented design by Hunleth and Cytron [7]. Following their schema,
we have two types of features in our system. Abstract Features
are features that provide infrastructure, but do not complete pri-
mary functionality on their own. Abstract Features must always be
augmented by a Concrete Feature. A Concrete Feature provides
primary functionality given that its dependencies are satisfied.

Counter System. The Counter System feature is the only abstract
feature that exists in the system. This provides the necessary in-
frastructure into Rocket Chip to realize the performance counter
system, but leaves out creation of the performance counter regis-
ters.

Direct Counters. The Direct Counters build out the standard per-
formance counters that are found in Rocket Chip. End users can
still choose how many performance counters they wish to include
in the system.

Address Restricted Counters. Instead of collecting event informa-
tion over the whole address range, the Address Restricted Counters
produce counters that are inhibited unless the program counter
is within a certain address range. This feature allows users to
customize the address range. Furthermore, this is managed com-
pletely outside of the architecture. The architected interface does
not change.

Instruction, Microarchitectural, & Cache Events. These three fea-
tures reimplement the standard event sets from Rocket Chip. How-
ever, unlike the original events and event sets, the order in which
they appear in the code does not change the bit values to configure
the events. Now, each event and event must be configured with a bit
value to distinguish itself. The advantage here is that the events and

event sets can be applied to the codebase in any order and events
can be added or subtracted without affecting any other events. In
fact, the way in which we have split the events into these sets is
completely arbitrary and could be atomized even further.

In order to ensure that correct interfaces have been created, we
provide correctness checking at generation time. If one or more
events share the same bit mask, then the generator will throw
an exception telling the end user they have created an invalid
configuration.

Accumulator Event. We recognize that this feature is very limited,
but we include it to demonstrate extra functionality that can quickly
be included via our feature-oriented approach. The Accumulator
Event feature routes a signal out of an RoCC [13] accumulator accel-
erator (included in Rocket Chip) and into the core for performance
counting. This feature provides a template for others to include
performance counter information from their accelerators as well.

6 RESULTS
Here we characterize the behavior of design endpoints in terms of
area utilization. Our simulation and testing was completed using
Chipyard [1] and our system is realized within a design based on the
TinyRocketChip provided by Chipyard. We targeted the XC7A35T-
1CPG236C FPGA which is in the Atrix-7 family of FPGAs from
Xilinx. All implementation was done using Vivado 2019.2.

6.1 Rocket Chip vs. Our System

Rocket Chip Our System
Zero Counters 24056 (1.00) 24025 (1.00)
All Counters 26542 (1.10) 26467 (1.10)

Figure 4: A comparison of Rocket Chip and our system in
area. The parenthesis show the normalized results in rela-
tion to the bold result.

In Figure 4 we compare the zero counter configuration of Rocket
Chip to our system (in bold) as well as the recreation of the full
counter system in Rocket Chip to our system. We also show all
results normalized to our base system in parenthesis. The resulting
zero counters systems are within 0.1% of each other in LUT usage.
Furthermore, when recreating the full performance counter system
from Rocket Chip we find similar results. These two systems are
within 0.3% of the same area usage. Thus, we find that feature-
orienting the performance counter system does not add any space
penalty. While the feature set we are examining here is small, we
are still effecting a large portion of the design with our features.
This result demonstrates efficacy for further applications of feature-
oriented design for hardware.

6.2 Design Endpoint Variations
Although our system can produce numerous design endpoints, in
Figure 5 we show the interaction of features through four different
design endpoints. In all of these endpoints, we have the system
create 29 performance counters, limiting the variation to just the
features listed. All numbers in parenthesis are the results normal-
ized to our base system which is bold in Figure 4.
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Direct Address Restricted
Instruction Events 26253 (1.09) 26378 (1.10)
All Events 26553 (1.11) 26872 (1.12)

Figure 5: The area in LUTs of four design variations. This ta-
ble shows direct versus address restricted counters and just
instruction events versus including all the possible events.
The results normalised to our base system are shown in
parenthesis.

Instruction Events vs. All Events. Regardless of the type of coun-
ters being used, there is about a 2% increase in area between just
the Instruction Events and All Events endpoints. This shows a clear
advantage for letting end users choose what features should be
included in the performance counter system. Easy savings in area
are not realized when all features are included by default. By taking
this additive approach, Rocket Chip could provide not only more
flexibility in the design, but automatically save designers space that
would take manual effort to do currently.

Direct vs. Address Restricted Counters. Regardless of the type of
events in the system, the Address Restricted Counters feature only
uses 1% more space than the Direct Counters. A feature like this is
extremely useful for programmers as many times they only wish
to performance monitor sections of their code. By completing this
action exclusively in hardware, programmers do not have to perturb
the system, leading to more accurate results. Our feature-oriented
approach allows Faust to insert this using a single line of code
which creates a new class that is only 7 lines. By having an agreed
upon way to add features to the system, we help guide the creation
of new features to affect the rest of the system as little as possible.

Comparing Features. Aprime advantage of this approach is shown
by this analysis. Since elided features do not exist in the system, when
we add a feature we can be more certain about what how each fea-
ture effects the system. Furthermore, paring this approach with
Faust means that we can quickly compare different design endpoints
with accuracy.

7 CONCLUSION AND FUTUREWORK
Overall, our feature-oriented performance counters provide a com-
posable, extendable, and easy to understand system all while in-
curring no significant area penalty in the design. It is our hope
that others will contribute their own features to this system and
continue to build up the catalogue of features that can be integrated
into the system.

One such feature of interest may be deployment of performance
measurements outside of the ISA, allowing cycle-accurate measure-
ment of events that are perturbed by the execution of instructions
that establish and sample the counters [4].

In this work, we demonstrated the power of feature-oriented
programming to simplify the customization and understanding of
hardware through the isolation of hardware generator features.
Currently, we consider this to be a proof-of-concept for feature-
oriented hardware design. In our continuing work we wish to bring
this sort of design to more portions of Rocket Chip and would
encourage others to consider designing their hardware generators
this way as well.

In order for RISC-V to become the universal ISA that it set out
to be, we must provide hardware designs that are not only tailored
to specific use cases, but are also easy to understand and extend.
Feature-oriented design presents a viable path forward to do just
that.
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