
Feature-Oriented Design for Hardware Generation∗

Dissertation Proposal

Justin Deters

Department of Computer Science and Engineering
James McKelvey School of Engineering

Washington University in St. Louis
St. Louis, Missouri USA

December 15, 2020

∗Supported under NSF CISE award CNS-1763503 Performant Architecturally Diverse Systems via Aspect-
oriented Programming

1



Contents

1 Introduction 3

2 Background 3
2.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Feature-Oriented Programming . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Hardware Description versus Hardware Construction Languages . . . 4

2.2 Current Problems with Hardware Design . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Monolithic hardware designs are difficult to reuse. . . . . . . . . . . . 5
2.2.2 Hardware designs are difficult to integrate into each other. . . . . . . 5
2.2.3 Comparing microarchitecture designs between chips is difficult. . . . . 5
2.2.4 Performance tuning a processor requires substantial effort. . . . . . . 6
2.2.5 Monolithic designs obscure negative feature interaction. . . . . . . . . 6

3 Proposed Research Questions 6
3.1 To what extent does FOP save on development time? . . . . . . . . . . . . . 6
3.2 How much better can we utilize hardware resources by conditionally weaving

hardware features? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 To what extent does FOP introduce penalties in the hardware design toolchain? 7

4 Methodology 7
4.1 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Programming Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 Chisel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2.2 Scalameta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.3 Rocket Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Experiments 9
5.1 Feature-Oriented Performance Counters for Rocket Chip . . . . . . . . . . . 9
5.2 Accelerator and Co-Processor Interfaces . . . . . . . . . . . . . . . . . . . . 10
5.3 Design Space Exploration in Rocket Chip . . . . . . . . . . . . . . . . . . . . 11

6 Future Work 12

7 Research Plan 12

8 References 13

A Code Listings 16

B Component Diagrams 19

2



1 Introduction

Hardware designers frequently build monolithic designs with different hardware features
entangled with each other. Because of this, subsetting or extending features becomes difficult.
For the same reason, evaluating and integrating features between chip designs is arduous.
Traditional hardware description languages force hardware designers to explicitly lay out
chips in their designs. Hardware generation languages, such as Chisel, were introduced
to bring more flexibility to hardware design. These frequently come as domain-specific
languages embedded in a general-purpose programming language. Despite the increased
flexibility, designers use these languages just like traditional HDLs, resulting in the same
monolithic and entangled designs. We propose analyzing the benefits of applying the software
design technique of Feature-Oriented Design to these hardware generation languages. This
technique isolates software features and allows them to be optionally included or exchanged
with others. We believe that this approach will alleviate the issues with hardware design
discussed above.

2 Background

2.1 Prior Work

2.1.1 Feature-Oriented Programming

When customers have a single set of features that they wish their software to contain, widely
used software paradigms such as procedural or object oriented programming are commonly
used to implement software. However, there are some situations where a single set of features
does not suit every end-user. Software designers could take a “kitchen sink” approach where
every possible feature is implemented in the final software design. This can lead to code bloat
and can make human understanding of the codebase difficult. One programming paradigm
that attempts to solve this problem is Feature-Oriented Programming (FOP). In FOP,
features are implemented separately and then composed together to create a design for the
end-user.

In [13, 14] Hunleth et al. demonstrate this approach in the context of middleware. Their
approach uses Aspect-Oriented Programming (AOP) to compose features. Generally,
AOP [17] is used to implement crosscutting concerns. These are concerns that do not fit
cleanly into a module, such as a function or class, but instead span over multiple modules
in a program. Aspects capture these crosscutting concerns. Aspects, at minimum, have
two components: pointcuts and advice. A pointcut represents all the points (called join
points) in the codebase where the advice will be applied. Advice defines what code will
be applied and how it will be applied. The three types of advice are before, after, and
around which are applied before a join point, after a join point, or replaces a join point,
respectively.

Hunleth et al. created a single base implementation of the middleware with functionality
common to all features. They then captured different features in aspects. This allowed
them to design an architecture in which the features the end-user desired could be woven
into the middleware. By generating different feature sets, they were able to reduce the

3



code complexity and the footprint of the middleware. Similarly, we wish to apply this
programming paradigm to achieve reductions in complexity and footprint, but in hardware
instead of software.

2.1.2 Hardware Description versus Hardware Construction Languages

While it is not impossible to use FOP with hardware description languages (HDLs),
their limited features make the application of FOP difficult. Fortunately, a class of hard-
ware languages, hardware construction languages, have been developed that attempt to
do for hardware languages what high-level programming languages have done for software
development. These make the application of FOP to hardware more attainable.

Historically, chip designers have used hardware description languages, such as VHDL and
Verilog, to define the layout of their chips. Unlike their programming language counterparts,
VHDL and Verilog lack high-level language features that enable modular, parameterizable,
and reusable code. To overcome this, a class of languages called hardware construc-
tion languages have developed. These either borrow syntax from high-level languages or
are a domain-specific language embedded within a general-purpose programming language.
Rather than these directly specifying a circuit, they instead generate a circuit as an output
of their execution. Examples of these languages include JHDL [4], Clash [2], MyHDL [8],
PyMTL [20], Hardware ML [20], and Chisel [3].

Chisel An example of a popular hardware construction language is Chisel [3]. Chisel is a
domain-specific language embedded in Scala [23] for constructing hardware. Unlike HDLs,
Chisel code is not directly synthesizable. Instead, execution of a Chisel program results
in generating a hardware design as output. Thus, a Chisel program can be thought of as
collection of code that manages the generation of a hardware design. This allows hardware
designers to create more generalized designs that can be parametrized and reused.

Listing 11 demonstrates powerful hardware construction features that Chisel provides. To
begin, both Adder and the subcomponent OneBitAdder are defined as normal Scala classes.
Thus, as seen on line 10, a programmer can instantiate as many of these classes as they
would like. Furthermore, because both of these modules are plain Scala classes, they can
be parameterized. On line 1, the number of bits is parameterized. This adder can be an
arbitrary number of bits long. Because Chisel generates synthesizable hardware designs, we
can use hardware tools to get space and power estimations of different parameterizations of
designs. Thus, we can directly compare different hardware configurations to each other.

Unlike traditional HDLs, hardware construction languages like Chisel can utilize the rich
ecosystem of software design patterns. This flexibility allows designers to create complex
hardware generators that can then be packaged as libraries and reused by other designers.
This is especially easy for Chisel since in reality it is just Scala and thus comes with all
the same packaging features. Ideally, this will lead to hardware designers creating libraries
for frequently needed hardware constructs and enable more open hardware design. The
flexibility that Chisel has can make applying FOP to hardware much easier.

1All listings from here forward will appear in the Appendix.
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2.2 Current Problems with Hardware Design

2.2.1 Monolithic hardware designs are difficult to reuse.

Consider a company that needs a new microcontroller. Given their specific use cases, they
may not need things such as floating point units or other types of instructions. Any licensed
design will likely be monolithic with limited modularity because the structure of traditional
HDLs forces designers to explicitly lay out hardware. Despite the introduction of hardware
construction languages which do not have this same requirement, this practice remains com-
mon. This results in the continuation of monolithic designs without the ability to remove
hardware that supports different parts of the ISA without difficulty. This can add significant
development time and effort for their product.

In a similar situation, a company may need to save space or power in their chip design,
but still require the full ISA. Here microarchitectural features, such as data and instruc-
tion prefetchers, cache, and branch predictors, might be targeted for removal or changes.
However, the chip designers will encounter the same situation as the previous scenario. Mi-
croarchitectural features are also explicitly laid out and are entangled into the overall design.
In addition, when extending microarchitecture features, designers may spend large amounts
of time refactoring due to the entangled and explicit nature of HDLs.

2.2.2 Hardware designs are difficult to integrate into each other.

Consider another situation, in which a research group has created several designs for accel-
erators. They wish to have other research groups use their designs in their own research.
Currently, if one wishes to use an accelerator, co-processor, or other existing hardware de-
sign, they must have the physical hardware it was designed for. Hardware designs are usually
tied to a specific hardware interface provided by the device. Often, these interfaces are not
modular, and this limits the exchange of accelerator designs between researchers. Conversely,
if a chip designer has several accelerators they wish to integrate into their chip, they will
run into the same issue. Changing each of the interfaces to match the destination interface
can be tedious. The interfaces in general can be limiting in both how the accelerator must
communicate with the rest of the data path and how many accelerators can be integrated
into the chip. Furthermore, these interfaces themselves add overhead, space, and power
consumption to a processor design.

2.2.3 Comparing microarchitecture designs between chips is difficult.

Monolithic chip designs increase the difficulties of comparing two or more feature implemen-
tations. Say a research group has created a design for a new branch predictor and wants to
directly compare it to other branch predictor designs. Because microarchitectural features
are frequently entangled with each other, replacing one implementation with another may
require substantial refactoring. This introduces more variability into the design of the chip,
making direct comparisons between different implementations of microarchitectural features
harder.
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2.2.4 Performance tuning a processor requires substantial effort.

Naturally, if designers wish to compare implementations of features, they will also wish to
compare different combinations of implementations in order to determine which arrange-
ment will work best for their purposes. This adds yet another level of complexity above the
previous problem. Performance tuning can take a lot of refactoring to integrate multiple
microarchitectural designs for comparison. Thus doing large amounts of design space explo-
ration and performance tuning can add significant time and effort to the design process of a
chip.

2.2.5 Monolithic designs obscure negative feature interaction.

The two well-known microarchitecture security exploits, Spectre [18] and Meltdown [19], are
the direct result of the difficulty of feature interaction analysis in hardware design. Inde-
pendently, the two features of out-of-order execution and caching seem innocuous. However,
when combined they created an exploit where sensitive data could be moved into cache by
speculative execution and then read later by legal instructions. If features could be analyzed
for negative interactions, then these exploits could possibly be avoided in the future.

3 Proposed Research Questions

Given the state of affairs in subsection 2.2 we propose applying feature-oriented design to
hardware generation using an aspect-oriented approach to alleviate the problems described
above. In order to determine if this approach is feasible, we need to answer several questions.

3.1 To what extent does FOP save on development time?

If FOP is a viable alternative to monolithic hardware design techniques, then we need to
show that it actually reduces the development burden on hardware designers. Given two
or more different implementations of features, does FOP reduce the time to switch them
out? If developers want to remove a feature altogether, is FOP faster than doing it by
hand? When navigating design spaces, can FOP iterate through designs faster than manual
reconfiguration? When a new hardware design needs to be integrated into an existing design,
can FOP make that integration faster?

3.2 How much better can we utilize hardware resources by con-
ditionally weaving hardware features?

We want to show that designers can use FOP to utilize hardware resources better, especially
in terms of circuit area, power consumption, and latency. How much space and power can
be reclaimed by removing the hardware that supports unnecessary parts of the ISA? By how
much can the critical path of a circuit be reduced? Similarly, when certain microarchitecture
features are unneeded, how much space and power can be saved by stripping them from the
design? Instead of using predefined hardware interfaces, can space and power be reduced
by just weaving the new design into the chip? Finally, if FOP allows designers to directly
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compare different features or sets of features together, can space and power be saved overall
by choosing the more optimal design configurations?

3.3 To what extent does FOP introduce penalties in the hardware
design toolchain?

Since FOP is not already accounted for in any hardware design toolchains, we need to
investigate which penalties exist and to what magnitude. For instance, FOP moves away
from a monolithic design so the hardware elaboration time might increase. Furthermore, the
hardware will most likely end up being laid out in code much differently. To what extent
does this affect the optimization process? Does place and route for hardware generated with
FOP take any longer than monolithic designs? Ideally, FOP has the same or fewer penalties
in the toolchain as monolithic designs. If FOP does have penalties, understanding what they
are and their extent can help determine where FOP is most useful.

4 Methodology

4.1 RISC-V

In their 2018 Turing Award, Lecture John Hennessy and David Patterson outlined why
they believed that their open ISA would pave the way for community development of hard-
ware. They envisioned RISC-V as the basis for open development of hardware. Rather than
having hardware designers work away in enclaves, designers could publish, compare, audit,
and stress-test designs as a community. The openness and extendability of RISC-V would
also allow communities of hardware designers to agree on additions to the ISA for specific
domains, giving a common language for these domains to operate on hardware. Our goal
for FOP in hardware is to increase the modularity and shareability of hardware designs, so
RISC-V is a natural choice for a target hardware architecture.

4.2 Programming Infrastructure

4.2.1 Chisel

We have chosen Chisel as the primary programming infrastructure for our experiments. Ear-
lier we discussed how Chisel can parameterize circuit designs. We demonstrate the parame-
terization in Diagrams 1 and 2. These show what Chisel generates when our parameterized
adder design is configured as a four-bit adder. Recall that Chisel is embedded within Scala.
This enables a level of expressiveness far and above that of a traditional HDL and allows us
to utilize existing libraries and tools within the Scala community.

We can demonstrate this expressiveness with a second adder example. This time, we
will examine a carry look-ahead adder. The circuitry needed to build the carry component
of this adder is much more complex and can become unwieldy given a high number of bits.
However, because we can algorithmically generate hardware in Chisel, we can abstract out
the necessary logic to generate the proper circuit. Listing 2 demonstrates such an algorithm.
By leveraging Scala’s functional programming features, we can generate a carry look-ahead
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component of an arbitrary length. Diagram 4 shows the carry component which is generated
for a four-bit adder. This expressiveness directly assists us in exploring our research questions
and eases the adoption of FOP.

Chisel also offers many other perks. A growing community of hardware designers have
adopted Chisel, giving us a rich set of hardware components to investigate. Furthermore,
Chisel offers a very robust toolchain that is open to this community. The FIRRTL2 compiler
offers robust type checking, optimization of circuits, and can directly emit Verilog or build
a emulator for a circuit. As such, we have been able to synthesize both of our Chisel adders
on an Xilinx Artix-7 FPGA.

Chisel Aspects Currently, Chisel does contain a library for aspect-oriented programming.
The primary work on this library was completed by Adam Izraelevits for his PhD thesis [15].
Despite basing this library on aspect-oriented programming, Izraelevits specifically warns
programmers against using it to implement primary functionality. Rather he proposes that
the library be used for inserting hardware design collateral, such as floor plans, into Chisel
designs. To our knowledge, there is no functional reason for this warning, but it is instead
based on the author’s own opinions on aspect-oriented programming.

In the preparation for this proposal, we evaluated this library and explicitly ignored the
author’s warning. The two adder designs we have explored in this proposal are actually the
same design, but an aspect controls which version of the carry is generated. Listing 3 shows
two aspects we created to insert the circuitry needed for each type of carry. Importantly,
both of these aspects are agnostic to the number of bits in the adder. Both of these use the
InjectingAspect interface provided by Chisel. The first parameter is an anonymous function
that provides a list of modules that the aspect will be applied to (the joinpoint). The second
parameter is an anonymous function with the actual code that will be applied at the end of
the module. Colla-Gen then produces a series of FIRRTL annotations [15] which are passed
to the FIRRTL compiler with the rest of the circuit design.

Limitations of Chisel Aspects In our preliminary investigation of Chisel’s aspect li-
brary, we found its abilities to be too limiting for our experiments. First, Chisel Aspects
only provide one joinpoint, the module. This means that all RLT code inserted into the
design ends up at the bottom of the module. This coarse granularity does not afford us
much flexibility. Furthermore, around advice can only be faked by leveraging Chisel’s last
connection syntax, where, during elaboration, the last connection in depth first traversal
of the code will be the generated connection.

Second, Chisel Aspects cannot influence the IO of a module. This means that every
feature a designer would want to include must be accounted for in the IO of the module. This
creates inflexible cluttered interfaces for IO that could otherwise be simplified to conserve
space and power.

Third, Chisel Aspects are applied after circuit elaboration during compilation in the
FIRRTL compiler. This means that the Scala compiler is completely unaware of any new
code that would be inserted into the design. Thus any aspect that would create legal Scala
code if applied prior to compilation creates an error. By extension, these aspects cannot

2FIRRTL is the intermediate representation used in the Chisel tool chain.
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influence each other. If a joinpoint is introduced in one aspect, the corresponding aspect for
that joinpoint will not be applied in a later phase. For these reasons, we looked elsewhere
for a way to apply aspects.

4.2.2 Scalameta

Fortunately, Scala includes a powerful meta-programming library, Scalameta [26]. The
Scalameta library can parse Scala code into abstract syntax trees (ASTs) that can be ma-
nipulated by removing, changing, or generating new subtrees. We have used Scalameta to
create a rudimentary aspect compiler that overcomes many of the limitations of Chisel As-
pects. The transformations are applied to the source code prior to the Scala compilation
phase. The Scala compiler is aware of all new features that have been woven into the code
and can perform syntax and type checking on them. Furthermore, because the code still
follows the same toolchain, we keep the Chisel type checking and the optimizations that
occur in the FIRRTL compiler. But now, the smallest joinpoint granularity is on the scale
of the individual tokens. This offers us far more flexibility than Chisel Aspects.

4.2.3 Rocket Chip

Rocket Chip [1] is a system-on-a-chip generator written in Chisel that implements the RISC-
V ISA. Rocket Chip is still under active development and is used as the chip environment
for many different RISC-V research projects. Rocket Chip not only provides the ability to
generate a complete chip, but also provides a robust test suite, easing the development of
new features for the chip. The designers have included parameterization within Rocket Chip,
but the overall chip design still suffers from the problems that we outlined in subsection 2.2.

We have chosen Rocket Chip over other RISC-V designs for two reasons. First, the
robust development community and its use in research projects gives us plenty of examples
of hardware features to investigate and compare. Second, Rocket Chip is written in Chisel,
which makes the application of FOP much easier than a RISC-V design written in an HDL.

5 Experiments

5.1 Feature-Oriented Performance Counters for Rocket Chip

Chip designers commonly include performance counters in their designs to give useful infor-
mation to end-users about the behavior of their chips. To collect the necessary information
across the chip, designers must create circuitry that crosscuts multiple modules. Which per-
formance counters are available to end-users may differ greatly between chip designs. For
instance, a server-grade multi-core processor may provide counters for cache misses, stall
cycles, executed instructions, and others for each core. However, an embedded processor
may not include any performance counters at all.

As a first foray into this technique, we propose developing a feature-oriented performance
counter system for Rocket Chip [1]. Given the crosscutting nature of performance counters
and their variability over designs, they are perfect candidates for feature-oriented design.
Currently, if a user wishes to implement a new performance counter in Rocket Chip, they
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would need to manually route all signals through multiple modules. The current hardware
performance counters are hard coded into the design with no infrastructure for other design-
ers to add their own counter to the list or remove the ones they do not need.

Refactoring the existing performance counter system in Rocket Chip into a feature-
oriented design has several advantages. First, we will be able demonstrate how FOP eases
the development of new performance counters and the selection of counters in the final de-
sign (Question 3.1). Second, as Rocket Chip is a fully synthesizable design, we can easily
compare space and power requirements of the two different implementations with different
sets of performance counters (Question 3.2). Along the same lines, Rocket Chip utilizes the
full Chisel toolchain giving us the ability to determine if any performance penalties from
FOP exist in the toolchain (Question 3.3).

Apart from a direct comparison to the current performance counter system, we would also
like to contribute new functionality while demonstrating the advantages of FOP (Question
3.1); namely, automatically generating different circuitry based on the number of different
performance counters the designer would like to have in the design. Currently, the RISC-V
specification [25] allows for 28 user-configurable performance counters3. If a chip designer
has 28 or fewer events they wish to include, then a simple hardware structure to associate
the event to a counter is sufficient. In the event that more than 28 events are included, we
wish to weave in a different hardware structure that will handle the swapping of events for
the end-user. Using FOP, these changes could be applied automatically without any designer
intervention.

5.2 Accelerator and Co-Processor Interfaces

In Section 2.2 we discussed how hard-coded hardware interfaces present a challenge to inte-
grating different designs. More concretely, Rocket Chip provides two separate interfaces for
connecting accelerators to the core generator: the Rocket Custom Coprocessor (RoCC) and
the TileLink-Attached Accelerator. RoCC is a tightly coupled interface that Rocket Chip
provides. The general-purpose processor can directly communicate with the accelerator via
custom instructions reserved in the RISC-V ISA. A RoCC accelerator also has direct access
to a core’s L1 private data cache [12]. However, RoCC limits users to only four custom
accelerators [24]. A TileLink-Attached Accelerator uses the TileLink [7] interface to connect
the accelerators to the LLC of the processor [12]. Communication with the accelerator is
achieved via memory-mapped registers [24]. Although these interfaces are useful, they are
limited in that users can only use the predefined interface (RoCC), or the information must
travel over the chip interconnect to get to its destination (TileLink-Attached Accelerator).

We propose contributing a new feature-oriented interface to Rocket Chip for co-processors
and accelerators. Instead of limiting designers to a single monolithic interface, we wish to
refactor both of the existing interfaces so that designers can choose what features best fit
their designs’ needs. Rocket Chip [1] comes packaged with a set of example accelerators
and an ecosystem of accelerators designed for Rocket Chip has begun to develop [22, 27,
9, 5, 21, 11, 10]. This collection of co-processors and accelerators can show us the feature

3The Counter subsection of the specification is still a draft, so the number of performance counters may
change in the future.
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sets that designers actually ended up using or what features they had to add themselves.
From this point, we can determine how much effort it would take to generate the useful
feature set for each accelerator and how much effort is necessary to extend the feature
set (Question 3.1). Since we will be working within the existing ecosystem, we can then
make direct comparisons between implementations in terms of space and power consumption
(Question 3.2). Depending on what features are included in the interface, there might be
a fair amount of weaving that cross cuts many different modules in the chip or accelerator
design. This will help us further determine how FOP affects the chip generator toolchain
(Question 3.3).

As a second phase of this experiment, we want to push our FOP integration technique
even further. The primary goal of these interfaces is to create a structure for the ISA and
the hardware features to interact. This raises the question, if we can use FOP to weave in
the necessary logic to extend the ISA and handle special instructions in the general-purpose
core’s data path, do we need the interface at all? We propose using FOP to dissolve the
co-processors and accelerators themselves into the data path of processors. We will be able
to use our prior work on the interfaces to directly compare the development effort between
the two different approaches. This will give us more insight into how FOP can increase
or decrease development effort (Question 3.1). Furthermore, since our prior work should
represent minimal implementations of the necessary interfaces, we will know how much
space and power we can save by eliminating them altogether (Question 3.2).

5.3 Design Space Exploration in Rocket Chip

It is apparent that Rocket Chip offers fertile ground for open source hardware exploration.
It is a complete system for hardware designers and researchers to build and test new designs.
On top of that, Rocket Chip provides parameterization to users so that they can customize
Rocket Chip either by changing hardware features or in some cases, removing them alto-
gether. On the surface this would seem like an ideal situation for chip designers. However,
like we described in Section 2.2, Rocket Chip suffers from the same monolithic design that
most other hardware designs do. This limits Rocket Chip in two important ways.

1. Designers are limited to the parameters that Rocket Chip provides.

2. Designers cannot swap different implementation of features without manual refactoring.

Rocket Chip achieves parameterization through the use of implicit parameters. In
Scala a parameter in any function may be declared as implicit. When the function is used,
that parameter does not have to be present in the parameter list to be passed. A variable is
passed to the function implicitly if it is defined in a parent scope, is declare as implicit, and
shares the same name. This means that parameters must crosscut many different modules
to actually end up where their hardware definition is elaborated. If a designer wishes to
extend the parameters, they must take care to pass them through the design in the same
way. In order to demonstrate FOP’s ability to ease development (Question 3.1) we propose
creating a feature-oriented design exploration framework. Instead of splaying the parameters
through the whole system, we envision weaving them into the design, making them easier to
configure and extend.
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The two main implementations of processing cores in Rocket Chip are Rocket Core [16],
a five stage in order pipeline core, and Rocket BOOM [6], an out-of-order superscalar core.
Both Rocket Core and Rocket BOOM share libraries provided by Rocket Chip in their
implementations. However, they both contain their own non-swappable micorarchitectural
features such as branch predictors and prefetchers. Ironically, despite both of these cores
implementing the necessary features, no configuration of either or combination of the two
can create a superscalar in order core. Finally, even though the RISC-V ISA is modular by
design, neither of these two cores has the ability to easily drop parts of or extend the ISA.
The ability to test different designs, or combinations of designs, or remove parts of the design
altogether would be extremely beneficial for chip development. Thus, we propose using FOP
to make this swapping possible within our design exploration framework (Question 3.1).

Doing this work would allow us to explore both Questions 3.2 and 3.3 on the level of a
whole chip design. Luckily, Rocket Chip comes packaged with Verilator, a cycle accurate
simulation tool. Additionally, Rocket Chip comes with the standard RISC-V benchmark
suite created by the RISC-V Foundation. Given this toolchain, we can performance tune
Rocket Chip for the provided benchmarks. We want to show that by quickly generating chip
designs, we can find where space and power can be saved faster (Question 3.2), hopefully
with little overhead on the toolchain overall (Question 3.3).

6 Future Work

The work in this proposal opens up the ability to explore the last problem in Section 2.2. This
problem poses a new research question that we have not planned to explore, “To what extent
can we quantify and analyze interaction of features in a chip design?” What information
would we need to capture from a feature? What models would be appropriate for feature
analyzing feature interaction? What kinds of interactions, positive or negative, are possible
to uncover? Answering these questions could have large implications for quickly discovering
problems with both performance and security in chip designs. Demonstrating the advantages
of FOP and separating out features from a monolithic design is the first step to exploring
this problem, which we have proposed.

7 Research Plan

Possible Places for Publication

• IEEE/ACM International Symposium on Microarchitecture

• Workshop on Computer Architecture Research with RISC-V

• International Symposium on Computer Architecture

• Design Automation Conference
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Eds., Springer Berlin Heidelberg, pp. 220–242.

14



[18] Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Ham-
burg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom,
Y. Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19) (2019).

[19] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn,
J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security Sympo-
sium (USENIX Security 18) (2018).

[20] Lockhart, D., Zibrat, G., and Batten, C. Pymtl: A unified framework for
vertically integrated computer architecture research. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture (2014), IEEE, pp. 280–292.

[21] Mao, H. Hardware acceleration for memory to memory copies. Master’s thesis, EECS
Department, University of California, Berkeley, Jan 2017.

[22] Nasahl, P., Schilling, R., Werner, M., and Mangard, S. Hector-v: A
heterogeneous cpu architecture for a secure risc-v execution environment. ArXiv
abs/2009.05262 (2020).

[23] Odersky, M., and Rompf, T. Unifying functional and object-oriented programming
with scala. Commun. ACM 57, 4 (Apr. 2014), 76–86.

[24] Research, B. A. 6.3. RoCC vs MMIO — Chipyard documentation.

[25] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Document Version 2019121, December 2019.

[26] Scalameta. Scalameta · Library to read, analyze, transform and generate Scala pro-
grams.

[27] Tiwari, S., Gala, N., Rebeiro, C., and Kamakoti, V. Peri: A posit enabled
risc-v core, 2019.

15



A Code Listings

1 class Adder (bitWidth: Int) extends Module {

2 val io = IO(new Bundle{

3 val a = Input(UInt(bitWidth.W))

4 val b = Input(UInt(bitWidth.W))

5 val sum = Output(UInt(bitWidth.W + 1))

6 })

7

8 // create each adder and wire them to their inputs

9 val adders = for (i <- 0 until bitWidth) yield {

10 val unit = Module(new OneBitAdder ())

11 //wire up the inputs

12 unit.io.a := io.a(i)

13 unit.io.b := io.b(i)

14

15 unit

16 }

17

18 //the first adder needs to have a false input to carryIn

19 adders (0).io.carryIn := false.B

20

21 //wire the carryOut from n-1 to the carryIn of n

22 for(i <- 1 until bitWidth) {

23 adders(i).io.carryIn := adders(i-1).io.carryOut

24 }

25

26 // create a set of wires to collect the sums

27 val sums = Wire(Vec(bitWidth + 1, Bool()))

28

29 // collect the sums

30 for(i <- 0 until bitWidth) sums(i) := adders(i).io.sum

31

32 //get the carry out of the last adder to complete the sum

33 sums.last := adders.last.io.carryOut

34

35 //wire up the full sum to the output

36 io.sum := sums.asUInt

37 }

38

39 class OneBitAdder extends Module {

40 val io = IO(new Bundle{

41 val a = Input(Bool())

42 val b = Input(Bool())

43 val carryIn = Input(Bool())

44 val sum = Output(Bool())

45 val carryOut = Output(Bool())

46 })

47

48 val p = io.a ^ io.b

49 io.sum := p ^ io.carryIn

50

51 val g = io.a & io.b
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52 val p_c = io.carryIn & p

53 io.carryOut := g | p_c

54 }

Listing 1: An example of an adder in Chisel. Special classes for hardware description are
shown in red.

1 class CarryLookaheadGenerator (bitWidth: Int) extends MultiIOModule{

2 val pIn = IO(Input(Vec(bitWidth , Bool())))

3 val gIn = IO(Input(Vec(bitWidth , Bool())))

4 val cOut = IO(Output(Vec(bitWidth , Bool())))

5

6 for(stage <- 0 until bitWidth){

7 cOut(stage) := generateStage(stage)

8 }

9

10 def generateStage (stage: Int): Bool = {

11 generateOR(stage , stage)

12 }

13

14 def generateOR(stage: Int , level: Int): Bool = {

15 level match {

16 //the last thing that need to be OR’d is the g of the stage

17 case -1 => gIn(stage)

18 //otherwise , OR with the level’s AND , then generate another level

19 case x if x == stage => (false.B & generateAND(stage , level)) |

20 generateOR(stage , level -1)

21 case _ => (gIn(stage -level -1) & generateAND(stage , level)) |

22 generateOR(stage , level -1)

23 }

24 }

25

26 def generateAND(stage: Int , level: Int) : Bool = {

27 level match {

28 case 0 => pIn(stage -level)

29 case _ => pIn(stage -level) & generateAND(stage , level -1)

30 }

31 }

32 }

Listing 2: A class that generates the carry-lookahead component for an adder.

1 class AdderAspects(bitWidth: Int) {

2 val rippleCarry = Seq(

3 InjectingAspect(

4 //this function has to point to the actual path of the objects

5 //top.adders is the *actual* list of OneBitAdders in the Adder class

6 {top: Adder => top.adders},

7 {adder: OneBitAdder =>

8 val g = adder.io.a & adder.io.b

9 // p is actually defined in OneBitAdder

10 val p_c = adder.io.carryIn & adder.p

11 adder.io.carryOut := g | p_c

12 }
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13 )

14 )

15

16 val carryLookahead = Seq(

17 InjectingAspect(

18 {top: Adder => top.adders},

19 {adder: OneBitAdder =>

20 val g = adder.io.a & adder.io.b

21 adder.io.pOut := adder.p

22 adder.io.gOut := g

23 }

24 ),

25 InjectingAspect(

26 {top: Adder => Seq(top)},

27 {adder: Adder =>

28 val carryLookaheadModule = Module(new CarryLookaheadGenerator(

bitWidth))

29

30 //pull the p and g out of each module and connect it to the

carryLookahead module

31 for(i <- 0 until bitWidth){

32 carryLookaheadModule.io.pIn(i) := adder.adders(i).io.pOut

33 carryLookaheadModule.io.gIn(i) := adder.adders(i).io.gOut

34 }

35 // reassign the carry ins to be from the carryLookahead module

instead

36 for(i <- 1 until bitWidth){

37 adder.adders(i).io.carryIn := carryLookaheadModule.io.cOut(i

-1)

38 }

39

40 // reassign the last bit in sums to the carry out of the

carryLookahead module

41 adder.sums.last := carryLookaheadModule.io.cOut.last

42 }

43 )

44 )

45 }

Listing 3: Two aspects that can switch between two different carry circuits.

1 val alu = Module(new ALU)

2 alu.io.dw := ex_ctrl.alu_dw

3 alu.io.fn := ex_ctrl.alu_fn

4 alu.io.in2 := ex_op2.asUInt

5 alu.io.in1 := ex_op1.asUInt

6

7 //163 lines later

8

9 mem_reg_wdata := Mux(ex_scie_unpipelined , ex_scie_unpipelined_wdata , alu.

io.out)

10 mem_br_taken := alu.io.cmp_out

11

12 //291 lines later
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13

14 io.dmem.req.bits.addr := encodeVirtualAddress(ex_rs (0), alu.io.adder_out)

Listing 4: An example of how the ALU is splayed out over the Rocket Core.
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Figure 1: The overview of the generated four bit ripple carry adder.
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