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1 PROBLEM AND MOTIVATION
Unlike software programmers, hardware designers must still con-
tend with the relatively low-level constructs of hardware design
languages (HDLs) such as Verilog or VHDL. This results in mono-
lithic hardware characterizations where many features are hard
coded. Effort has been made to alleviate this through hardware
generation languageswhich are embedded in software languages.
One example, Chisel [1], is a domain-specific language embedded
in Scala. These software language based solutions make significant
progress towards algorithmic generation of hardware.

Even with hardware generation languages, exploring design
spaces to optimize hardware characterizations remains difficult. In
this paper, we focus on the potential optimizations of an adder com-
ponent. Normally, in Chisel, Verilog, or VHDL, such a component
would be automatically generated when the + operator is used. The
hardware compiler will either optimize for space or performance,
depending on what the designer requests. Hardware compilers and
synthesis tools offered by companies are often opaque. Thus, hard-
ware designers do not have access to the exact hardware constructs
that are being generated. However, a designer may want to optimize
both power and performance around a fixed point.

Instead of designers starting from scratch to build optimized
hardware components, our approach borrows even more from the
software languages domain by using Feature-Oriented Program-
ming (FOP). We take a base design and compose different features
together creating a system that can quickly be rearranged, and can
explore this optimization efficiently. As a stepping stone to larger
hardware constructs, we use an adder as a proof of concept for this
technique1.

2 BACKGROUND AND RELATEDWORK
Feature-Oriented Programming in Software. [2–4, 7] have shown

the efficacy of FOP for creating novel mixtures of features in the
context of the CORBA [8] Event Channel. The feature-oriented
version was 1.4–3 times smaller than the monolithic version, de-
pending on the configuration [7]. Furthermore, the feature-oriented
version was able to perform approximately 131,000 events versus
approximately 1,600 events per second of the monolithic version. In
order to feature-orient their design, this body of work uses Aspect-
Oriented Programming (AOP) [6] to optionally “weave” features
into the codebase.

Aspect-Oriented Programming. AOP allows programmers to im-
plement concerns that do not cleanly fit into software modules
1The code for our adder can be found at github.com/jdeters/ChiselAdder

(such as logging). Aspects contain the necessary information to
implement a concern across modules in a system. They are “woven”
into the code to produce the desired final system. Capturing fea-
tures inside of aspects gives end users a choice of what features
they would like in their particular implementation of a system.

Classic Adder Designs. In this work, we use elements of two well
known adder designs: ripple-carry adders and carry-lookahead
adders. Ripple-carry adders work much like simple pen-and-paper
addition where the carry moves from one digit to the next. Due to
this, these adders have time complexity of 𝜃 (𝑛). Carry-lookahead
adders have circuitry that allows the carry to bypass the lower
digit,s making it a faster circuit. Instead, these adders have time
complexity of 𝜃 (𝑙𝑜𝑔(𝑛)) at the expense of more space taken by the
extra circuitry.

3 APPROACH AND UNIQUENESS
In order to feature-orient hardware designs, we take a cue from
[2–4, 7] and use AOP. Normally, the two types of carries discussed
in Section 2 would be hard coded into the hardware design. Instead,
our approach captures each type of carry in an aspect that then can
be selectively applied to the design. Thus, we can quickly rearrange
modules in the adder and apply carries to them, allowing easy
exploration of the optimization space.

To demonstrate this, we have created an adder that contains
elements from the two adders discussed earlier. Our hybrid designs
are 𝑛 bits long. Each 𝑛 bits can be divided into𝑚 sub-adders that
are each 𝑛/𝑚 bits in length. The sub-adders use carry-lookahead
internally, and ripple-carry connects the sub-adders externally. We
denote these hybrid adders as 𝑆 (𝑛,𝑚) adders where 𝑆 (16, 1) is a
classic carry-lookahead adder and 𝑆 (16, 16) is a classic ripple-carry
adder. For example, Figure 1 shows an 𝑆 (16, 2) adder. The length
of the adder is 𝑛 = 16, there are𝑚 = 2 sub-adders, and then each
sub-adder is of length 𝑛/𝑚 = 8.

We use Chisel [1] to implement our hybrid adder. Chisel also
includes an aspect library [5] that allows new functionality to be
inserted into hardware modules. Figure 2 shows the tool flow used
in our experiments. The design enters the tool flow on the left fully
configured. The Chisel toolchain takes care of generating the circuit
in the design and applying the aspects. Verilog of the configured
adder is emitted on the other end. Typically, the adder would be
generated and optimized at the Vivado stage of the toolchain. With
our method, we pull the generation of the adder and its optimization
into the language itself at the Desgin.scala stage.
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Figure 1: An 𝑆 (16, 2) Adder. This adder is 16 bits long and has 2 sub-adders each of length 8.
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Figure 2: The tool chain we are using for hardware generation.

4 RESULTS AND CONTRIBUTIONS
Using aspects to apply the carry feature made building the hybrid
design relatively easy. In total, it only took us a few hours to create
our hybrid design. This included designing, coding, and testing.
Figure 3 shows the breakdown of the code for our hybrid design.
This relatively small codebase generates tens of thousands of lines
of hardware code for higher bit adders.

In our hybrid design experiments we examined an 𝑆 (128,𝑚)
adder where𝑚 ∈ {2, 4, 8, 16, 32}. Figures 4 and 5 show the space
utilization and maximum delay of our hybrid designs. The blue
and green lines show the performance of each of the classic adder
designs, whereas the red and orange lines show the performance
of our hybrid design.

Our experiments show that by utilizing a feature-oriented ap-
proach, we can quickly rearrange and regenerate the adder charac-
terization to explore the optimization space that would normally
be out of the reach of hardware designers. While we recognize that
this is a small example, it motivates how hardware characteriza-
tion and optimization could be aided by feature-oriented design. In
continuing work, we have already applied this concept to larger
hardware constructs within a RISC-V chip characterization.

Type Lines of Code
Base 112
Aspect 45
Carry-Lookahead Generator 37
Total 194

Figure 3: The number of lines of code to generate the hybrid
designs.
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Figure 4: The number of LUTs used in the hybrid design.
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Figure 5: The maximum delay for the hybrid design.
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